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Abstract. The Grothendieck-Ogg-Shafarevich formula expresses the Euler

characteristic of an étale sheaf on a characteristic-p curve in terms of local

data. The purpose of this paper is to prove an equicharacteristic version of
the G-O-S formula (a bound, rather than an equality). This follows work of

R. Pink.
The basis for the proof of this result is the characteristic-p “Riemann-

Hilbert” correspondence, which is a functorial relationship between two dif-

ferent types of sheaves on a characteristic-p scheme. In the paper we prove a
one-dimensional version of this Riemann-Hilbert correspondence, considering

both local and global settings.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Let Y be a smooth
projective k-curve, and let N be a constructible étale sheaf of Fp-vector spaces on
Y . We are concerned with computing the sizes of cohomology groups of the pair
(Y,N).

The following theorem (the “Grothendieck-Ogg-Shafarevich formula”) provides
a starting point. For any étale F`-sheaf M on Y , where ` denotes a prime different
from p, let χ(Y,M) denote the Euler characteristic of M . (That is, χ(Y,M) =∑2
i=0(−1)i dimF`

Hi(Y,M).)

Theorem 1.0.1. Let ` be a prime which is not equal to p. Let G be a constructible
F`-sheaf on Y such that:

(1) G is locally constant on some open subcurve Y ′ ⊆ Y , and
(2) Gy = {0} for all points y ∈ Y r Y ′.

Then,

χ(Y,G) = (2− 2g)m−
∑

y∈YrY ′

(m+ Swy (G)) ,(1.0.2)

where g denotes the genus of Y and m = rank G.

In equation (1.0.2), Swy (G) denotes a local invariant called the “Swan conduc-
tor.” (See [7] for a discussion of this formula.)

It is desirable to have a similar formula for the Euler characteristic of an Fp-
sheaf on Y . Unfortunately the equicharacteristic case presents some difficulties. It
is possible to construct two Fp-sheavesN1 andN2 on the same curve Y , both sharing
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the same rank and the same local data but possessing different Euler characteristics.
(See Example 3.2.11.)

So an exact analogue of Theorem 1.0.1 is not possible. The purpose of this paper
is to prove a lower bound for χ(Y,N) which matches the form of (1.0.2). This builds
on previous work of R. Pink in [6].

The proof of the lower bound is based on the relationship between equicharac-
teristic étale sheaves and coherent OY -modules. We will explain briefly the central
ideas in the proof and then state the main result.

Let M be a coherent OY -module which has a Frobenius-linear endomorphism
φ : M→M. Then the subsheaf Mφ ⊆ M is a constructible Fp-étale sheaf on Y .
There is an exact sequence

0 // Mφ // M
1−φ // M // 0.(1.0.3)

This exact sequence determines a long exact sequence of cohomology groups. The
long exact sequence can be used to prove the following inequality:

χ(Y,Mφ) ≥ χ(Y,M).(1.0.4)

This allows us to use results from coherent cohomology to study the Euler charac-
teristic χ(Y,Mφ). (This is an idea that is used in [6].)

So, a general lower bound on χ(Y,N) is possible if there exists a canonical way
to construct an exact sequence in the form of (1.0.3) for N . This paper offers
such a canonical construction. The construction is based on the characteristic-p
“Riemann-Hilbert” correspondence of M. Emerton and M. Kisin ([3]).

Let

N = HomFpr (N,OY ) .(1.0.5)

This sheaf is a quasi-coherent OY -module. Also, the pth-power map on OY induces
a Frobenius-linear endomorphism N → N . In the notation of [3], N is left OF,Y -
module. The sheaf N can be recovered (except for sections with punctual support)
from the sheaf N . (See Theorem 2.3.11 in this paper.)

The sheaf N possesses special submodules which are called roots. A root of N
is a coherent OX -submodule N ′ ⊆ N which satisfies some special properties (see
Definition 2.1.3). The concept of a root is due to G. Lyubeznik ([5]). The special
properties of a root imply in particular the existence of an exact sequence,

0 // N // (N ′)∨ // (N ′)∨ // 0,(1.0.6)

(where (N ′)∨ denotes the coherent sheaf dual of N ′). Thus the Euler characteristic
of N is related to the Euler characteristics of the roots of N . In this paper we
show that the sheaf N possesses a canonical minimal root, N0, and that the Euler
characteristic of N0 can be computed from local information about the sheaf N .1

Inequality (1.0.4) thus gives a lower bound on χ(Y,N). The following theorem is
the result:

Theorem 1.0.7. Let N be a constructible Fp-étale sheaf on Y whose sections all
have open support. Then,

χ (Y,N) ≥ (1− g) (rank N)−
∑
y∈Y

C
(
N(y)

)
.(1.0.8)

1We note that the existence of canonical minimal roots was recently proved, independently, in

a much broader context. See the work of M. Blickle in [2].
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(See Corollary 3.1.22.) In (1.0.8), the expression C
(
N(y)

)
denotes a local invari-

ant which is called the “minimal root index” of N at y.
In this paper we present a proof of the above theorem using the characteristic-p

Riemann-Hilbert correspondence (a functorial relationship between OF,Y -modules
and Fp-étale sheaves). This correspondence is developed in full generality in [3].
Since we prefer to avoid the language of derived categories, we will not make direct
use of the results from that paper. Instead we prove a miniature version of the
correspondence which applies to curves. Our version includes both a “local” and
“global” version of the Riemann-Hilbert correspondence, as well as functors relating
the two. (See Theorems 2.3.11, 2.3.16, and 4.3.1.)

The body of the paper is divided into three sections. Section 2 develops basic
theory for the study of OF,X -modules and gives the statement of the characteristic-
p Riemann-Hilbert correspondence. Section 3 proves the main result and offers
some examples. It is shown (in subsection 3.3) that the main result is compatible
with the previous results of R. Pink in [6]. Finally, Section 4 gives the full proof of
the Riemann-Hilbert correspondence in dimension one.

1.1. Acknowledgements. This paper is the published version of my thesis from
UC-Berkeley. I gratefully acknowledge the help of my mentors, who have had
extensive influence on the shape of the material here: Arthur Ogus (my thesis
advisor), Martin Olsson, and Brian Conrad. I also thank Manuel Blickle, Igor
Dolgachev, Kiran Kedlaya, Gennady Lyubeznik, Mark Kisin, Jacob Lurie, Brian
Osserman, Richard Pink, Bjorn Poonen, Karen Smith, and Nicolas Stalder for
helpful discussions.

1.2. Notation and conventions. Throughout this paper, let p denote a prime
and let r denote a positive integer. Let k be an algebraically closed field of charac-
teristic p. Let Fpr denote a finite field of pr elements. Fix an embedding Fpr ↪→ k.

All sheaves are assumed to be sheaves on an étale site. Thus, if X is a k-scheme,
then OX denotes the étale structure sheaf of X. If x is a k-point of X, then OX,x
denotes the étale stalk of OX at x.

If X is a k-scheme, x is a closed point of X, and Q is an étale sheaf on X, then
Q(x) denotes the pullback of Q via the morphism

Spec OX,x → X.(1.2.1)

If X is a k-scheme and R is a sheaf of rings on X, then Mod(X,R) denotes the
category of sheaves of left R-modules on X.

If S is a k-algebra, let FS : S → S denote the Frobenius map. If X is a k-scheme,
let FX : X → X denote the Frobenius endomorphism.

All schemes are assumed to be Noetherian and separated.

2. Unit OF r,X-modules

This section covers some preliminaries. The central objects of concern are quasi-
coherent sheaves that have Frobenius-linear endomorphisms. Following [3], we con-
sider these sheaves as modules over a particular sheaf of noncommutative rings
(“OF r,X”).
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2.1. Definitions. Let S be a k-algebra. Then S[F r] denotes the twisted polyno-
mial algebra over S determined by the rth Frobenius endomorphism F rS : S → S.
Elements of S[F r] are thus finite sums of the form∑

i≥0

siF
ri,(2.1.1)

(with si ∈ S) and multiplication is expressed by the rule F rs = sp
r

F r.
Likewise, let Z denote a k-scheme. Then OF r,Z denotes the sheaf of twisted

polynomial rings determined by the rth Frobenius endomorphism of OZ . If U ⊆ Z
is any open subset, then OF r,Z(U) ∼= OZ(U)[F r].

A leftOF r,Z-module is simply anOZ-moduleN equipped with an endomorphism
φ : N → N satisfying the condition

φ(fn) = fp
r

φ(n) for any U ⊆ Z, f ∈ OZ(U), n ∈ N (U).(2.1.2)

(The map φ is determined by the left-action of F r.) This condition can be com-
pactly expressed by saying that φ induces an OZ-linear morphism F r∗Z N → N .

Now we introduce some terminology from [3]. If N is a left OF r,Z-module,
we call the morphism F r∗Z N → N the structural morphism of N . A unit OF r,Z-
module is a left OF r,Z-module whose OZ-module structure is quasi-coherent and
whose structural morphism is an isomorphism. A unit OF r,Z-module is a locally
finitely-generated unit (lfgu) OF r,Z-module if, additionally, it is finitely-generated
as a left OF r,Z-module on any affine open subset of Z.

Let Modu (Z,OF r,Z) and Modfu (Z,OF r,Z) denote, respectively, the full sub-
categories of Mod (Z,OF r,Z) consisting of the unit and lfgu OF r,Z-modules.

An lfgu OF r,Z-module is not necessarily coherent, but it must have a coherent
OZ-submodule which generates it under the action of F r. The following definition
identifies a special class of coherent generators for an lfgu OF r,Z-module. The
definition is due to Lyubeznik.

Definition 2.1.3. Let Z be a k-scheme, and let N be a unit OF r,Z-module. An
OZ-submodule N ′ ⊆ N is a root if the following conditions hold:

(1) the OZ-module N ′ is coherent,
(2) the OZ-submodule of N generated by F r (N ′) contains N ′, and
(3) as a left OF r,Z-module, N is generated by N ′.

Proposition 2.1.4. Let W be a smooth irreducible k-scheme, and let P be an lfgu
OF r,Z-module. Then P has a root.

Proof. See Theorem 6.1.3 in [3]. �

Suppose that W and P are as in the above proposition. Then the existence of a
root for P allows us to express P as a union of coherent subsheaves. Let P0 be a
root for P, and let Pi denote the OZ-submodule of P generated by F ri (P0). The
root properties imply that the subsheaves Pi form an ascending sequence:

P0 ⊆ P1 ⊆ P2 ⊆ . . .(2.1.5)

and
⋃
Pi = P.

Also, since we have assumed that W is smooth, some stronger statements can be
made. The flatness of the Frobenius morphisms F riW : W →W implies that there are
injections F ri∗W P0 → F ri∗W P. Restricting the structural isomorphisms F ri∗W P → P
via these injections yield isomorphisms F ri∗W P0 → Pi. These isomorphisms imply
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AN EULER-POINCARÉ BOUND FOR EQUICHARACTERISTIC ÉTALE SHEAVES 5

that all of terms in sequence (2.1.5) have the same generic rank. In particular,
since P0 and P1 have the same generic rank, they concur on some dense open
subset U ⊆W . Filtration (2.1.5) therefore collapses:

P0|U = P1|U = P2|U = . . . .(2.1.6)

We have proved the following useful proposition.

Proposition 2.1.7. Let W be a smooth irreducible k-scheme, and let P be an
lfgu OF r,W -module. There must exist a dense open subset U ⊆ W on which P is
coherent.

The same reasoning applied to one-point schemes also proves the following:

Proposition 2.1.8. Let L be a field of characteristic p, and let V be a finitely-
generated unit L[F r]-module. Then V is finite-dimensional over L.

2.2. The minimal root. We will focus now on one-dimensional schemes. Let Y
denote a smooth projective k-curve.

Proposition 2.2.1. Let N be an lfgu OF r,Y -module. Let N0 be a root for N which
has minimal degree (as a coherent sheaf). Then N0 is contained in every other root
of N .

Proof. Suppose that N ′
0 is another root for N . Let N ′′

0 = N ′
0 ∩ N0. I claim that

N ′′
0 is also a root for N . This can be seen as follows: let {Ni}∞i=0, {N ′

i}∞i=0, and
{N ′′

i }∞i=0 denote the induced filtrations for N (described in subsection 2.1). For
any i, the module N ′′

i is the image under the isomorphism

F ri∗Y N → N(2.2.2)

of F ri∗Y (N0 ∩N ′
0). By the flatness of the Frobenius morphism,

F ri∗Y (N0 ∩N ′
0) =

(
F ri∗Y N0

)
∩
(
F ri∗Y N ′

0

)
.(2.2.3)

This equality implies that N ′′
i = Ni ∩ N ′

i . The root properties for N ′′
0 follow

immediately from this fact. Therefore N ′′
0 is indeed a root. Since N ′′

0 is contained
N0 and its degree cannot be any smaller than that of N0, we must have N0 = N ′′

0 .
This proves the proposition. �

We will refer to the root of minimal degree simply as “the minimal root” of the
lfgu OF r,Y -module. The minimal root also has a local description, which we now
construct. Note that for any unit OF r,Y -module N , the stalk Ny at any closed
point y is a unit OY,y[F r]-module. If N0 is a root of N , then (N0)y is a root of Ny.
We define an invariant for these local roots.

Definition 2.2.4. Let (A,m) be a Henselian DVR of characteristic p with A/m ∼=
k. Let Q be a finitely-generated unit A[F r]-module, and let Q0 ⊆ Q be a root for
Q. Let Q1 ⊆ Q denote the A-submodule generated by F r (Q0). Then the F r-index
of Q0 is

dimkQ1/Q0

pr − 1
.(2.2.5)

Proposition 2.2.6. Let (A,m) be a Henselian DVR of characteristic p with A/m ∼=
k. Let Q be a finitely-generated unit A[F r]-module. Then Q has a unique minimal
root which is contained in every other root.
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6 CARL A. MILLER

Proof. This is a special case of Theorem 2.10 from [1]. Alternatively, one can
use Definition 2.2.4. Let Q0 ⊆ Q be the root with the smallest F r-index. Then
Q0 must be contained in every other root by an argument similar to the proof of
Proposition 2.2.1. �

Definition 2.2.7. Let A and Q be defined as in Definition 2.2.4. Then the minimal
root index of Q (denoted C(Q)) is the F r-index of the unique minimal root of Q.

We note the following basic proposition. The proof is elementary and is left to
the reader.

Proposition 2.2.8. Let (A,m) be a Henselian DVR with A/m ∼= k, and let Q be
a unit A[F r]-module which is finitely-generated over A. Then the only root of Q is
Q itself. The minimal root index of Q is 0.

Using Proposition 2.2.6, we can characterize global minimal roots by their stalks:

Proposition 2.2.9. Let N be an lfgu OF r,Y -module, and let N0 be the minimal
root for N . Then for any closed point y ∈ Y , the stalk (N0)y is the unique minimal
root of Ny.

Proof. This follows easily using Proposition 2.1.7. Let V ⊆ Y be a nonempty open
subcurve on which N is coherent. Then a coherent subsheaf N ′

0 ⊆ N is a root if
and only if both of the following properties hold:

(1) (N ′
0)|V = N|V , and

(2) (N ′
0)y is a root of Ny for every y ∈ Y r V .

The minimal root N0 is simply the root which has a minimal stalk at every point
of Y r V . �

The compatibility of local and global minimal roots implies an important numer-
ical relationship. Let N be an lfgu OF r,Y -module and N0 ⊆ N be its minimal root.
Let N1 ⊆ N denote the OY -submodule generated by F r (N0). Then N0/N1 is a
skyscraper sheaf whose stalk-dimension at any point y is equal to (pr − 1)C(Ny).
Therefore

degN1 = degN0 + (pr − 1)
∑
y∈Y

C(Ny).(2.2.10)

On the other hand, the isomorphism F r∗Y N0
∼= N1 implies

degN1 = pr · degN0.(2.2.11)

Combining these two equalities yields

degN0 =
∑
y∈Y

C(Ny).(2.2.12)

This formula will be important in section 3.

2.3. Unit OF,X-modules and étale sheaves. We continue to let Y denote a
smooth projective k-curve. Let N be an lfgu OF r,Y -module. Then the sheaf

HomOF r,Y
(N ,OY )(2.3.1)

has the structure of an étale sheaf of Fpr -vector spaces on Y . Thus there is a functor

HomOF r,Y
(·,OY ) : Modfu (Y,OF r,Y ) →Mod (Y,Fpr ) .(2.3.2)
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AN EULER-POINCARÉ BOUND FOR EQUICHARACTERISTIC ÉTALE SHEAVES 7

This functor has an alternative expression in terms of roots. Let N0 be a root
for N . Let N∨

0 be the coherent sheaf dual for N0. There is a natural left OF r,Y -
module structure on the sheaf N∨

0 , which can be described as follows. Let N0 ⊆
N1 ⊆ N2 ⊆ . . . ⊆ N denote the filtration induced by N0. For any homomorphism
φ : N0 → OY , let F r(φ) ∈ N∨

0 be the composition

N0
// N1

∼=
��

OY

F r∗Y N0
F r∗

Y (φ)// F r∗Y OY

∼=

OO(2.3.3)

This assignment makes N∨
0 a coherent (not necessarily unit) left OF r,Y -module.

Consider the restriction map

HomOF r,Y
(N ,OY ) → HomOY

(N0,OY ) (= N∨
0 ).(2.3.4)

Sections in the image of this map arise from Frobenius invariant morphisms from N
to OY , and are therefore invariant under the action of F r on N∨

0 . Thus restriction
actually determines a map

HomOF r,Y
(N ,OY ) → (N∨

0 )F
r

.(2.3.5)

On the other hand, suppose that ψ : N0 → OY is a homomorphism which is invari-
ant under F r. Then ψ determines a series of maps

Ni // F ri∗Y N0

F ri∗
Y (ψ) // OY , i = 0, 1, 2, . . .(2.3.6)

which are all compatible. Taken together these determine a homomorphism N →
OY which is OF r,Y -linear. This association is an inverse to (2.3.5), and thus we see
that there is in fact an isomorphism,

HomOF r,Y
(N ,OY ) ∼= (N∨

0 )F
r

.(2.3.7)

So, the sheaf HomOF r,Y
(N ,OY ) can be identified with a subsheaf of the coherent

OX -module N∨
0 .

The relationship between étale sheaves of Fpr -vector spaces and lfgu OF r,Y -
modules can be more fully understood with the addition of a second functor. Let
N be a sheaf of Fpr -vector spaces on Y . Then the sheaf of OY -modules

HomFpr (N,OY )(2.3.8)

has a natural structure of a left OF r,Y -module given by the Frobenius endomor-
phism of OY . Thus there is a functor

HomFpr (·,OY ) : Mod (Y,Fpr ) →Mod (Y,OF r,Y ) .(2.3.9)

If N is the lfgu OF r,Y -module from above, then the sheaf

N ′′ := HomFpr

(
HomOF r,Y

(N ,OY ) ,OY
)

(2.3.10)

is a left OF r,Y -module. There is also a natural “double-dual” homomorphism
N → N ′′. The functors HomOF r,Y

(·,OY ) and HomFpr (·,OY ) are the basis for
the characteristic-p Riemann-Hilbert correspondence.
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8 CARL A. MILLER

We quote here (for use in section 3) three results which summarize the Riemann-
Hilbert correspondence on a curve. The first two results are proved in section 4.2

The third result follows from the first via isomorphism (2.3.7).
The Riemann-Hilbert correspondence on Y is an equivalence between two cate-

gories: (1) the category of torsion-free lfgu OF r,Y -modules, and (2) the category of
constructible Fpr -sheaves on Y in which all sections have open support.

Theorem 2.3.11. Let N be an lfgu OF r,Y -module which is torsion-free as an
OY -module. Then the sheaf

HomOF r,Y
(N ,OY )(2.3.12)

is a constructible Fpr -sheaf in which all sections have open support. The double-dual
homomorphism

N → HomFpr

(
HomOF r,Y

(N ,OY ) ,OY
)

(2.3.13)

is an isomorphism.
Let N be a constructible Fpr -étale sheaf on Y in which all sections have open

support. Then the sheaf

HomFpr (N,OY )(2.3.14)

is an lfgu OF r,Y -module which has no OY -torsion. The double-dual homomorphism

N → HomOF r,Y

(
HomFpr (N,OY ) ,OY

)
(2.3.15)

is an isomorphism.

Theorem 2.3.16. Let N be an lfgu OF r,Y -module. Let y be a closed point of Y .
Then the natural homomorphism

HomOF r,Y
(N ,OY )y → HomOY,y[F r] (Ny,OY,y)(2.3.17)

is an isomorphism.
Let N be a constructible Fpr -sheaf on Y . Then the natural homomorphism

HomFpr (N,OY )y → HomFpr

(
N(y),OSpec OY,y

)
(2.3.18)

is an isomorphism.3

Proposition 2.3.19. Let N be a constructible Fpr -sheaf on Y whose sections all
have open support. Let

N = HomFpr (N,OY ) ,(2.3.20)

and let N0 be a root for N . Then there is an isomorphism,

N
∼= // (N∨

0 )F
r

.(2.3.21)

2Theorem 2.3.11 is proved in subsection 4.5. Theorem 2.3.16 is a combination of Proposi-

tions 4.4.1 and 4.4.6.
3Here N(y) denotes the pullback of N via the natural morphism Spec OY,y → Y .
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3. The Euler characteristic of an étale Fpr -sheaf

Throughout this section, let Y denote a smooth projective k-curve.
If N is a constructible Fpr -sheaf on Y , let

χ(Y,N) = dimFpr H
0 (Y,N)− dimFpr H

1 (Y,N) .(3.0.22)

This section establishes a lower bound on χ(Y,N) using the theory developed in
section 2.

3.1. Main result. The following lemma provides the final preparation for the main
theorem.

Lemma 3.1.1. Let N ′ be a left OF r,Y -module which is coherent and locally-free
as an OY -module. Then the morphism

(1− F r)(·) : N ′ → N ′(3.1.2)

is surjective.

Proof. Let y be a closed point of Y . We will show that morphism (3.1.2) is surjective
at y. Choose any étale neighborhood U → Y of y, and any section n ∈ N ′(U). By
replacing U with a subordinate neighborhood if necessary, we may assume that N ′

is globally free on U . We may also assume that U is affine. Let U = Spec S.
Let {e1, . . . , e`} be a basis for the free S-module N ′(U). Choose elements {sij |

1 ≤ i ≤ `, 1 ≤ j ≤ `} such that

F r(ei) =
∑
j

sijej .(3.1.3)

Let n =
∑`
k=1 akek, with ak ∈ S.

Let V → U be the morphism of affine schemes defined by the ring extension

S′ := S[T1, T2, . . . , T`]/

〈{
Tj − aj −

∑
i

T p
r

i sij

}`
j=1

〉
.(3.1.4)

Note that this is an étale extension (since the module of relative differentials van-
ishes). The section ∑

k

Tk ⊗ ek ∈ N ′(V )(3.1.5)

maps to n|V under (3.1.2) (as the reader may verify). Therefore n|V is contained
in the image of (3.1.2). Since V → U is finite and therefore surjective, n itself is
contained in the image of (3.1.2). This completes the proof. �

Now we are ready to prove the main result. The basic method of our proof is
borrowed from [6].

Theorem 3.1.6. Let N be a constructible Fpr -étale sheaf on Y whose sections all
have open support. Let

N = HomFpr (N,OY ) .(3.1.7)

Let g denote the genus Y , and let m denote the rank of N . Then,

χ(Y,N) ≥ (1− g)m−
∑
y∈Y

C (Ny) .(3.1.8)
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10 CARL A. MILLER

Proof. Let N0 be the minimal root of N , and let N∨
0 denote its coherent dual. The

sheaf N∨
0 has the structure of a left OF r,Y -module (as discussed in subsection 2.3).

By Proposition 2.3.19 and Lemma 3.1.1, this gives an exact sequence,

0 // N // N∨
0

1−F r

// N∨
0

// 0 .(3.1.9)

Therefore the cohomology groups of N and N∨
0 are related by the long exact se-

quence

0 // H0 (Y,N) // H0 (Y,N∨
0 ) // H0 (Y,N∨

0 ) //

H1 (Y,N) // H1 (Y,N∨
0 ) // H1 (Y,N∨

0 ) // 0.

(3.1.10)

The finite-dimensional k-vector spaces H0 (Y,N∨
0 ) and H1 (Y,N∨

0 ) are left k[F r]-
modules, the first one being unit. There exist left k[F r]-module isomorphisms

H0 (Y,N∨
0 ) ∼= k⊕t0 ,(3.1.11)

H1 (Y,N∨
0 ) ∼= k⊕t1 ⊕W,(3.1.12)

where W is a left k[F r]-module with a nilpotent F r-action. (See Section 1 of [4]
for a discussion of this type of decomposition.)

Based on these isomorphisms, we can see that the map

(1− F r)(·) : H0 (Y,N∨
0 ) → H0 (Y,N∨

0 )(3.1.13)

is surjective, and therefore (3.1.10) splits up into two short exact sequences:

0 // H0 (Y,N) // H0 (Y,N∨
0 )

1−F r

// H0 (Y,N∨
0 ) // 0

0 // H1 (Y,N) // H1 (Y,N∨
0 )

1−F r

// H1 (Y,N∨
0 ) // 0.

(3.1.14)

We can see further that the Fpr -dimension of H0 (Y,N) is the same as the k-
dimension of H0 (Y,N∨

0 ), and the Fpr -dimension of H1 (Y,N) is no greater than
the k-dimension of H1 (Y,N∨

0 ). Thus we obtain the following inequality:

χ (Y,N) ≥ χ (Y,N∨
0 ) .(3.1.15)

(where χ(Y,N∨
0 ) = dimkH

0 (Y,N∨
0 )− dimkH

1 (Y,N∨
0 ).) Now Theorem 3.1.6 fol-

lows easily from the Riemann-Roch formula. By the discussion at the end of sub-
section 2.2,

degN0 =
∑
y∈Y

C (Ny) .(3.1.16)

Therefore by the Riemann-Roch theorem,

χ (Y,N) ≥ χ (Y,N∨
0 )(3.1.17)

= (1− g)m+ degN∨
0(3.1.18)

= (1− g)m− degN0(3.1.19)

= (1− g)m−
∑
y∈Y

C (Ny) .(3.1.20)

�
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AN EULER-POINCARÉ BOUND FOR EQUICHARACTERISTIC ÉTALE SHEAVES 11

An alternate (and perhaps more interesting) formulation of Theorem 3.1.6 is
allowed if we extend some of our notation. If N is a constructible Fpr -sheaf on Y ,
and y is a closed point of Y , then let C

(
N(y)

)
denote the minimal root index of the

Riemann-Hilbert dual

HomFpr

(
N(y),OSpec OY,y

)
.(3.1.21)

By Theorem 2.3.16, this dual is isomorphic to Ny. The following corollary follows
immediately.

Corollary 3.1.22. Let N be constructible Fpr -étale sheaf on Y whose sections all
have open support. Let g denote the genus of Y , and let m denote the rank of N .
Then,

χ(Y,N) ≥ (1− g)m−
∑
y∈Y

C
(
N(y)

)
.(3.1.23)

3.2. Examples. We will illustrate Theorem 3.1.6 and Corollary 3.1.22 via two
examples on the projective line.

We begin with a brief discussion in the local setting. As it turns out, the local
terms from Corollary 3.1.22 are easy to calculate explicitly in the case of rank-one
sheaves. Let y be a closed point of Y . Let A = OY,y, and let K be the fraction field
of A. Let t ∈ K be a local parameter. Let K ′/K be a degree-(pr − 1) extension
having an element t′ which satisfies (t′)p

r−1 = t.
For each i = 0, 1, 2, . . . , (pr − 2), consider the Fpr -subsheaf of OSpec A generated

by the element (t′)i ∈ K ′. Call this sheaf Vi. Each such sheaf is a rank-one Fpr -
sheaf with no global sections. The sheaves V0, V1, . . . , Vpr−2 taken together express
all of the isomorphism types of nontrivial rank-one Fpr -sheaves on Spec A.

Now consider the set of all Fpr -linear morphisms from Vi into OSpec A. One such
morphism is simply the inclusion fi : Vi ↪→ OSpec A. The Riemann-Hilbert dual

Vi = HomFpr (Vi,OSpec A) .(3.2.1)

is a one-dimensional K-vector space generated by the morphism fi. As the reader
may verify, the left A[F r]-module structure of Vi is given by

F r(fi) = ti · fi.(3.2.2)

Calculating the minimal root index for Vi is thus straightforward. The smallest
A-module in Vi which satisfies the root properties is the A-module generated by
t−1fi. The F r-index of this module is 1− i/(pr − 1). Therefore,

C (Vi) = 1− i

pr − 1
.(3.2.3)

In the examples that follow, we will use the following notation: if Z is a k-scheme,
then Fpr

Z
(or simply Fpr ) denotes the constant Fpr -sheaf on Z.

Example 3.2.4. Suppose that p > 2. Let P1 denote the projective line over k.
Let α : P1 → P1 denote the double-cover of P1 which maps 0 to 0, ∞ to ∞, and is
ramified at both of those points. Define

N = α∗

(
Fpr

P1

)
.(3.2.5)

The sheaf N is a rank-2 sheaf which is locally constant at every point except for 0
and ∞. The stalk N∞ decomposes as a direct sum,

N∞ ∼= W ⊕W ′,(3.2.6)
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12 CARL A. MILLER

in which W is a trivial rank-one sheaf, and W ′ is isomorphic to the sheaf V pr−1
2

from the classification above. Therefore,

C (N∞) = C (W ) + C (W ′) =
1
2
.(3.2.7)

A similar calculation shows that C (N0) = 1
2 .

In this case, Corollary 3.1.22 asserts:

χ(Y,N) ≥ (1− 0) · 2−
∑
y∈Y

C
(
N(y)

)
(3.2.8)

= 2−
(

1
2

)
· 2(3.2.9)

= 1.(3.2.10)

On the other hand, the Euler characteristic of N can be calculated directly. The
dimensions of the cohomology groups of N = α∗Fpr are the same as those of Fpr

(this can be seen from a Leray-Serre spectral sequence). Therefore χ(P1, N) =
χ(P1,Fpr ) = 1. So the formula from Corollary 3.1.22 actually computes χ(P1, N)
exactly.

Example 3.2.11. Now suppose p > 5. Let E be an elliptic curve, and let β : E →
P1 be a degree-2 morphism which has 4 ramified points, each of ramification index
2. Label the ramified points as q1, q2, q3, q4 ∈ P1.

Let N = β∗

(
Fpr

)
. Then N is locally constant on P1 r {q1, q2, q3, q4}, and by a

calculation similar to the one in example 3.2.4,

C (Nqi
) =

1
2

for i = 1, 2, 3, 4.(3.2.12)

So Corollary 3.1.6 asserts

χ
(
P1, N

)
≥ (1− 0) · 2−

4∑
i=1

C (Nqi
)(3.2.13)

= 0.(3.2.14)

In actuality, χ
(
P1, N

)
is equal to χ (E,Fpr ). This quantity can be equal to 0 or 1,

depending on whether on E is a supersingular elliptic curve.
So, Corollary 3.1.22 yields an equality if and only if E is an ordinary elliptic

curve.

3.3. The minimal root index of a tame sheaf. The discussion at the beginning
of the previous subsection will lead us to a more general calculation of the minimal
root index. Again, let y be a closed point of the curve Y , let A = OY,y, and let K
be the fraction field of A. Let t be a local parameter in A.

We need the following proposition and corollary.

Proposition 3.3.1. Let a and b be positive integers. Let Q be a finitely-generated
unit A[F a]-module. Then the minimal root index of Q when considered as a unit
A[F ab]-module is the same as the minimal root index of Q when considered as a
unit A[F a]-module.

Proof. Let Q0 ⊆
(
A[Fab]Q

)
be the minimal root for Q considered as an A[F ab]-

module. For any i ≥ 0, let Qi/b be the submodule of Q generated by F ai (Q0). The
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AN EULER-POINCARÉ BOUND FOR EQUICHARACTERISTIC ÉTALE SHEAVES 13

module Q1/b is also a root for A[Fab]Q. (This is clear via the isomorphism F a∗Q→
Q.) Since both Q0 and Q1/t are roots for A[Fab]Q, the intersection Q0 ∩ Q1/b is
a root for A[Fab]Q (by similar reasoning to that in the proof of Proposition 2.2.1).
Since Q0 is the minimal root for A[Fab]Q, it follows that Q0∩Q1/b = Q0. Therefore
Q0 ⊆ Q1/b, which means that Q0 is a root not only for A[Fab]Q but for Q itself.

The above reasoning shows that the minimal root for A[Fab]Q contains the min-
imal root for Q. But the reverse inclusion is obvious. So we see that Q0 is the
minimal root for both A[Fab]Q and Q. Thus,

C
(
A[Fab]Q

)
=

dimk (Q1/Q0)
pab − 1

(3.3.2)

=

∑b−1
i=0 dimk

(
Q i+1

b
/Q i

t

)
pab − 1

(3.3.3)

=

∑b−1
i=0

(
pai
)
dimk

(
Q 1

b
/Q0

)
pab − 1

(3.3.4)

=
dimk

(
Q 1

b
/Q0

)
pa − 1

(3.3.5)

= C (Q) .(3.3.6)

�

Corollary 3.3.7. Let W be a constructible Fpa-sheaf on Spec A whose sections all
have open support. Then the minimal root index of the Fpab-sheaf

Fpab ⊗Fpa W(3.3.8)

is the same as the minimal root index of W .

Proof. Let W be the Riemann-Hilbert dual of W . Then the Riemann-Hilbert dual
of Fpab ⊗W is A[Fab]W. �

Now, let Ktame/K denote the direct limit of all tame extensions of K (i.e.,
extensions of order coprime to p). A sheaf on Spec A will be called a tame sheaf if
its monodromy representation factors through Gal(Ktame/K).

Every finite quotient of Gal(Ktame/K) is an abelian group of order coprime to p.
Therefore, any finite-image representation of Gal(Ktame/K) over an algebraically
closed field of characteristic p decomposes into one-dimensional representations.
This fact has a natural consequence for sheaves on Spec A: if W is a tame con-
structible Fpr -sheaf on Spec A whose sections all have open support, then there
exists a field extension Fprb/Fpr such that the sheaf Fprb ⊗W decomposes into a
direct sum of rank-one Fprb -sheaves.

Let V be an Fprb -sheaf of rank one on Spec A which has no global sections.
Then (as discussed in subsection 3.2), there is a natural way to associate V with
a subsheaf of OSpec A. The sheaf V is isomorphic to the Fprb -subsheaf of OSpec A

generated by some element s ∈ Ktame which satisfies sc = td for some integers c
and d with 0 ≤ d < c, p - c.

Let λV denote the quantity
(
d
c

)
. Then the minimal root index of V is

C (V ) = 1− λV .(3.3.9)

The follow proposition follows immediately.
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14 CARL A. MILLER

Proposition 3.3.10. Let W be a constructible tame Fpr -sheaf on Spec A which
has no global sections. Let Fprb/Fpr be a field extension such that Fprb ⊗W can be
decomposed into a direct sum of rank-one sheaves. Then

C (W ) =
∑
V

(1− λV ) ,(3.3.11)

where the sum is taken over all summands in the decomposition of Fprb ⊗W . �

We note in passing that Proposition 3.3.10 makes the minimal root index com-
patible with the local terms used by R. Pink in [6]. Specifically: let N be a con-
structible Fpr -sheaf on Y such that Ny = {0} and N(y) is tame. Then, the rational
invariant LTFpr

y N (see Definition 5.3 in [6]) is exactly equal to the minimal root
index of N(y).

4. The Riemann-Hilbert correspondence on a curve

The purpose of this section is to prove the characteristic-p Riemann-Hilbert
correspondence in dimension one. Our approach is to build the proof in stages,
beginning in the local setting and then proceeding to the global.

Throughout this section, let Y denote a smooth irreducible projective k-curve.

4.1. The Riemann-Hilbert correspondence over a field. Suppose that L0

is a separably closed field of characteristic p. Let P0 be a finitely-generated unit
L0[F r]-module. Then P0 must have an L0-basis which is invariant under the action
of F r. This basis determines an L0[F r]-module isomorphism P0

∼= (L0)
⊕d for some

d ≥ 0. (See Proposition 1.1 in [4].)
More generally, if L is any field of characteristic p, and P is a finitely-generated

unit L[F r]-module, then there exists a finite separable extension L′/L such that
L′ ⊗L P is a trivial L′[F r]-module.

The following proposition about sheaves on Spec L follows easily.

Proposition 4.1.1. Let L be a field of characteristic p, and let T = Spec L. Then
for any lfgu OF r,T -module V, the double-dual morphism

V → HomFpr

(
HomOF r,T

(V,OT ) ,OT
)

(4.1.2)

is an isomorphism. For any constructible Fpr -sheaf V on T , the double-dual mor-
phism

V → HomOF r,T

(
HomFpr (V,OT ) ,OT

)
.(4.1.3)

is an isomorphism. �

4.2. The local structure of an OF r,Y -module on a curve. LetA be a Henseliza-
tion of the local ring k[t](t). Let K denote the fraction field of A. Note that for
any closed point y ∈ Y , the local ring OY,y is isomorphic to A. Therefore, we are
interested in the structure of unit A[F r]-modules.

We will refer to a unit A[F r]-module as “torsion-free” if it has no A-torsion.
Suppose that Q is a torsion-free finitely-generated unit A[F r]-module. Then let

Qvec =
∞⋂
i=0

tiQ.(4.2.1)
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The module Qvec is the largest K-vector space contained in Q. This definition can
be easily generalized to modules over any DVR. The reader may check the following
elementary assertions:

(1) The module Qvec is a finitely-generated unit K[F r]-module.
(2) The quotient Q/Qvec is a finitely-generated unit A[F r]-module.
(3) For any finite integral extension of rings A ↪→ A′,

(A′ ⊗A Q)vec = A′ ⊗A Qvec.(4.2.2)

There is an exact sequence,

0 → Qvec → Q→ Q/Qvec → 0(4.2.3)

for any torsion-free finitely-generated unit A[F r]-module Q. In this subsection we
are going to show that the quotient Q/Qvec always has a trivial structure.

We begin with an algebraic lemma.

Lemma 4.2.4. Let Q be a unit A[F r]-module which is a free A-module of finite
rank. Then, any F r-invariant element of Q/tQ can be uniquely lifted to an F r-
invariant element of Q.

Proof. The lemma may be formulated in terms of commutative algebra. Let {q1, . . . , qn}
be anyA-module basis forQ. SinceQ is a unitA[F r]-module, the set {F r(q1), . . . , F r(qn)}
is another basis, and there exists an invertible A-matrix (cij) such that

qi =
n∑
j=1

cijF
r(qj).(4.2.5)

An element
n∑
k=1

akqk ∈ Q (ak ∈ A)(4.2.6)

is F r-invariant if and only if
n∑
k=1

ap
r

k F
r(qk) =

n∑
k=1

akqk =
n∑
k=1

ak

n∑
j=1

ckjF
r(qj),(4.2.7)

or equivalently,

ap
r

k =
n∑
`=1

a`c`k(4.2.8)

for each k = 1, 2, . . . , n. Let

R = A[X1, . . . , Xn]/

({
Xpr

k −
n∑
`=1

X`c`k

}n
k=1

)
.(4.2.9)

Then F r-invariant elements of Q may be specified by A-homomorphisms from R
into A, while F r-invariant elements of Q/tQ may be specified by A-homomorphisms
from R into k. The claim made in the lemma, then, is equivalent to the assertion
that every element of HomA(R, k) can be lifted to an element of HomA(R,A).

This assertion becomes evident once we understand the structure of R. The
extension A → R is finite, flat, and unramified (as the reader may check), and
therefore étale. Since A is a Henselian local ring, R is simply a finite direct sum of
copies of A. �
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16 CARL A. MILLER

Proposition 4.2.10. Let Q be a unit A[F r]-module which is a free A-module of
finite rank. Then there exists an A[F r]-module isomorphism Q ∼= A⊕d for some d.

Proof. Choose an F r-invariant k-basis for Q/tQ. There is a unique F r-invariant
lifting of this set to Q by Lemma 4.2.4. By Nakayama’s lemma, this lifting is an
A-module basis, and so it determines the desired isomorphism. �

Proposition 4.2.11. Suppose that Q is a torsion-free unit A[F r]-module for which
there exists a K[F r]-module isomorphism,

K ⊗A Q ∼= K⊕d(4.2.12)

(with d ≥ 1). Then there exists an A[F r]-module isomorphism

Q ∼= K⊕d′ ⊕A⊕(d−d′)(4.2.13)

for some d′ with 0 ≤ d′ ≤ d.

Proof. Let Q′ ⊆ K⊕d be the image of Q under the injection Q→ K ⊗AQ→ K⊕d.
I claim first that Q′ ⊇

(
A⊕d

)
. Suppose that this were not so. Then, the module

S :=
(
A⊕d

)
/
(
Q′ ∩A⊕d

)
(4.2.14)

is a nontrival unit A[F r]-module. This module is a torsion A-module, and therefore
has finite dimension over k. But then the structural isomorphism

F r∗A S → S(4.2.15)

implies that (pr) dimk S = dimk S, which is impossible. Therefore Q′ contains(
A⊕d

)
.

Now consider the intersection of Q′ with the subset

t−1
(
k⊕d

)
= {(t−1c1, . . . , t

−1cd) | ci ∈ k} ⊆ K⊕d.(4.2.16)

The intersection Q′ ∩ t−1
(
k⊕d

)
has a Frobenius-linear endomorphism given by

Q′ ∩ t−1
(
k⊕d

) F r(·) // Q′ ∩ t−pr (
k⊕d

)·(tpr−1)
// Q′ ∩ t−1

(
k⊕d

)
.(4.2.17)

We can find a k-basis {λ1, λ2, . . . , λd′} for Q′ ∩ t−1
(
k⊕d

)
consisting of elements

which are fixed by this endomorphism. The elements in this basis can be written
as

λi = t−1ei,(4.2.18)

where ei ∈ (Fpr )⊕d ⊂ K⊕d.
Note that since t−1ei ∈ Q′, the A[F r]-module structure of Q′ implies that

t−Mei ∈ Q′ for any M > 0. Now enlarge the set {e1, . . . , ed′} to a d-element
set {e1, . . . , ed} which is a basis for (Fpr )⊕d. The basis {e1, . . . , ed} determines a
map

K⊕d′ ⊕A⊕(d−d′) → Q′,(4.2.19)

which is easily seen to be an isomorphism. This completes the proof. �

Proposition 4.2.20. Let Q be a torsion-free finitely-generated unit A[F r]-module
such that Qvec = {0}. Then there exists an A[F r]-module isomorphism Q ∼= A⊕d

for some d ≥ 0.
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Proof. The module K ⊗A Q is a finitely-generated unit K[F r]-module. Choose a
finite separable extension K ′/K which trivializes Q. Let A′ ⊆ K ′ be the integral
closure of A in K ′. Let Q′ = A′ ⊗A Q.

The module Q′ is a torsion-free unit A′[F r]-module such that Q′ ⊗A′ K ′ is iso-
morphic to (K ′)⊕d for some d. Note that A′, like A, is a Henselian local ring, and
in fact there exists an isomorphism between the pair (A′,K ′) and (A,K). Via this
isomorphism, we can apply Proposition 4.2.11 to find an isomorphism

Q′ ∼= K ′⊕d′ ⊕A′⊕(d−d′)
.(4.2.21)

Now since Q′vec = {0}, clearly we must have d′ = 0. Thus Q′ ∼= A′
⊕d.

The inclusionQ ↪→ Q′ makesQ isomorphic to a submodule of a finitely-generated
A-module. Therefore Q is itself a finitely-generated A-module. The desired result
now follows from Proposition 4.2.10. �

Proposition 4.2.22. Let Q be a torsion-free finitely-generated unit A[F r]-module.
Then Q/Qvec is isomorphic to A⊕d for some d ≥ 0.

Proof. Immediate from Proposition 4.2.20. �

4.3. The local Riemann-Hilbert correspondence. We will now prove the Riemann-
Hilbert correspondence over the local rings OY,y.

Theorem 4.3.1. Let y be a closed point of Y , and let Z = Spec OY,y. Let V be
an lfgu OF r,Z-module which is torsion-free (as an OZ-module). Then the sheaf

HomOF r,Z
(V,OZ)(4.3.2)

is a constructible Fpr -sheaf whose sections all have open support. The double-dual
morphism

V → HomFpr

(
HomOF r,Z

(V,OZ) ,OZ
)

(4.3.3)

is an isomorphism.
Let V be a constructible Fpr -sheaf on Z whose sections all have open support.

Then

HomFpr (V,OZ)(4.3.4)

is a torsion-free lfgu OF r,Z-module. The double-dual morphism

V → HomOF r,Z

(
HomFpr (V,OZ) ,OZ

)
(4.3.5)

is an isomorphism.

Proof. It is helpful at this point to assign labels to the functors in the Riemann-
Hilbert correspondence. Let

SZ (·) = HomOF r,Z
(·,OZ)(4.3.6)

and

MZ (·) = HomFpr (·,OZ) .(4.3.7)

For any Fpr -sheaf M on Z, let M con ⊆M denote the subsheaf which is generated
by the global sections ofM . For any torsion-free unit OF r,Z-moduleM, letMvec ⊆
M denote the subsheaf generated by Γ (Z,M)vec ⊆ Γ (Z,M) (using notation from
the previous subsection).

These two constructions satisfy a duality property under the Riemann-Hilbert
correspondence. Suppose that φ is a global section of MZ (M) (i.e., an Fpr -linear
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18 CARL A. MILLER

morphism from M into OZ). If φ is contained in MZ (M)vec, then it is easy to see
that the morphism of global sections,

Γ(Z,M)
φ// Γ(Z,OZ) (= OY,y)(4.3.8)

must be trivial. The converse is also true. The set of morphisms φ for which (4.3.8)
is trivial form a K-vector space (isomorphic to HomFpr

(
M|Spec K ,OSpec K

)
) which

is contained in MZ (M)vec.
Thus, MZ (M)vec is equal to the sheaf of morphisms M → OZ that kill M con.
Now suppose that M is a torsion-free finitely-generated unit OF r,Z-module. It

is clear that any OZ-morphism M→ OZ must kill Mvec. And, since M/Mvec ∼=
O⊕d
Z for some d, it is easily seen that any section of HomOF r,Z

(M,OZ) which kills
Mvec can be extended to a global section. Therefore SZ (M)con is the subsheaf of
SZ (M) consisting of morphisms which kill Mvec.

We can now prove the local Riemann-Hilbert correspondence by building on
Proposition 4.1.1 and Proposition 4.2.22. The duality discussed above implies that
the sequence

0 → SZ (V/Vvec) → SZ (V) → SZ (Vvec) → 0(4.3.9)

is exact. The sheaf SZ (V/Vvec) is constructible (in fact, constant), and the sheaf
SZ (Vvec) is constructible, therefore SZ (V) is constructible. There is a diagram

0 // Vvec //

��

V //

��

V/Vvec //

��

0

0 // MZ (SZ (Vvec)) // MZ (SZ (V)) // MZ (SZ (V/Vvec)) // 0

in which the vertical arrows are double-dual morphisms. The outer vertical arrows
are isomorphisms by Proposition 4.1.1 and Proposition 4.2.22, and so the inner
arrow is an isomorphism by the 5-lemma.

The second part of Theorem 4.3.1 follows similarly. �

4.4. Local-to-global compatibility. The next two propositions show that the
functors in the Riemann-Hilbert correspondence are compatible with localization.

Proposition 4.4.1. Let X be a smooth k-curve, and let x be a closed point of X.
Let M be a constructible Fpr -sheaf on X. Then the natural homomorphism

HomFpr (M,OX)x → HomFpr

(
M(x),OSpec OX,x

)
(4.4.2)

is an isomorphism.

Proof. By replacing X with an appropriate étale neighborhood of x, we may make
the following assumptions:

(1) X is affine.
(2) There is finite Galois morphism of curves

Z → X

z 7→ x,

which is totally ramified at x and étale elsewhere, such that M|Zr{z} is
constant.
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Let R be the coordinate ring of the curve X, and let S be the coordinate ring
of the (affine) curve Z r {z}. The automorphism group G := Aut (Z/X) acts on
S. Morphisms from the sheaf M to the sheaf OX can be expressed as commutative
diagrams

Γ(M,Z r {z}) // S

Γ(M,X) //

OO

R

OO(4.4.3)

in which the top map is G-equivariant. Likewise morphisms from the sheaf M(x)

to the sheaf OSpec OX,x
can be expressed as commutative diagrams

Γ(M,Z r {z}) // S ⊗R OX,x

Γ(M,X) //

OO

OX,x

OO(4.4.4)

in which the top map is G-equivariant.
Suppose that we are given a diagram in the form of (4.4.4) above. Then since

Γ(M,Z r {z}) and Γ(M,X) are both finite, there exists an étale subextension
B ⊆ OX,x of R such that the images of the top and bottom maps are contained in
S ⊗R B and B, respectively. Thus we obtain a diagram

Γ(M,Z r {z}) // S ⊗R B

Γ(M,X) //

OO

B.

OO(4.4.5)

This argument shows that any morphism from M(x) to OSpec OX,x
can be extended

to an affine étale neighborhood of x. This proves the proposition. �

Proposition 4.4.6. Let X be a smooth k-curve, and let x be a closed point of X.
Let M be an lfgu OF r,X-module. Then the natural homomorphism

HomOF r,X
(M,OX)x → HomOX,x[F r] (Mx,OX,x)(4.4.7)

is an isomorphism.

Proof. Replacing X with an open subcurve if necessary, we may assume that X is
affine. Let X = Spec R.

It suffices to show that any OX,x[F r]-module homomorphism Mx → OX,x can
be extended to an étale neighborhood of x. Let φ : Mx → OX,x be such a homo-
morphism. Let

{m1, . . . ,m`} ⊆ Γ(M, X)(4.4.8)

be a finite subset which generates M as an OF r,X -module. Find an étale subex-
tension R ↪→ R′ of R ↪→ OX,x which is large enough that R′ contains the set

{φ ((m1)x) , φ ((m2)x) , . . . , φ ((m`)x)} ⊆ OX,x.(4.4.9)

Then the homomorphism φ can be extended to a homomorphism from M|(Spec R′)

to OSpec R′ . �
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4.5. The proof of the global Riemann-Hilbert correspondence. We will now
complete the proof of the Riemann-Hilbert correspondence on Y (Theorem 2.3.11).

Proposition 4.5.1. Let N be a constructible Fpr -sheaf on Y . Then the sheaf

HomFpr (N,OY )(4.5.2)

is an lfgu OF r,Y -module.

Proof. Let N ′ denote the sheaf (4.5.2) above. Since N is constructible, there exists
an open subcurve V ⊆ Y on which N is locally constant of finite rank. The
restriction N ′

|V is a coherent OV -module.
We can prove the desired properties of N ′ from the analogous properties of its

stalks. Note that Theorem 4.3.1 and Proposition 4.4.1 imply that each stalk N ′
y,

y ∈ Y , is a finitely-generated unit OY,y[F r]-module. Since the structural morphism
F r∗Y N ′ → N ′ is an isomorphism at each closed point y ∈ Y , it is globally an
isomorphism. Moreover, since N ′

|V is a locally finitely-generated OF r,V -module,
and each stalk N ′

y at points y outside of V is a finitely-generated OY,y[F r]-module,
the sheaf N ′ is a locally finitely-generated OF r,Y -module.

It remains only to show that N ′ is quasi-coherent. Let j : V → Y denote the
inclusion map. Consider the homomorphism

N ′ ↪→ j∗

(
N ′
|V

)
.(4.5.3)

The sheaf j∗
(
N ′
|V

)
is quasi-coherent. The cokernel of (4.5.3) is easily seen to be

a quasi-coherent skyscraper sheaf. Therefore N ′ is quasi-coherent. This completes
the proof. �

Proposition 4.5.4. Let N be an lfgu OF r,Y -module. Then the Fpr -sheaf

HomOF r,Y
(N ,OY )(4.5.5)

is constructible.

Proof. Let N ′ denote sheaf (4.5.5) above. Theorem 4.3.1 and Proposition 4.4.6
imply that the stalks of N ′ are finite. To prove that N ′ is constructible, it suffices
to show that there exists a nontrivial étale morphism Z → Y such that N ′

|Z is
constant.

Let η be the generic point of Y . Let L denote a separable closure of the residue
field of η, and let

η : Spec L→ Y(4.5.6)

denote the corresponding geometric generic point. The stalk Nη is a finitely-
generated unit L[F r]-module, which must be trivial.

Consider the finite subset (Nη)F
r

⊆ Nη. There exists an étale open U → Y such
that all elements of this subset can be realized as sections of N on U . Let P ⊆ N|U
be the subsheaf generated by the F r-invariant sections of Γ(U,N ). This subsheaf
is a trivial OF r,U -module.

The generic rank of P is the same as that of N|U . Since N|U is coherent on a
dense open subset of U (by Proposition 2.1.7), it is easily seen that the sheaves N|U
and P agree on some nonempty open subset U ′ ⊆ U .

Then, since N|U ′ is a trivial OF r,U ′ -module, the dual sheaf N ′
|U ′ is constant.

This completes the proof. �
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Proof of Theorem 2.3.11. Propositions 4.5.1 and 4.5.4 assert that (2.3.12) is a con-
structible Fpr -sheaf and that (2.3.14) is an lfgu OF r,Y -module. The rest of the
assertions in the theorem follow from Theorem 4.3.1 via Propositions 4.4.1 and
4.4.6. �
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