Final Exam - Math 217 Carl Miller Winter 2008

Name: ______

Please circle your answers. Cross out any work that you do not want graded.

Problem	Grade	Max
1		10
2		10
3		10
4		15
5		10
6		10
7		15
8		10
9		10
Total		100

Credit for problems 1-4 is based on your answers only.

- (1) Mark the following statements as either "True" or "False."
 - If A and B are invertible square matrices, then $(AB)^{-1}$ must be equal to $A^{-1}B^{-1}$.
 - Suppose that S is an orthonormal set of vectors in \mathbb{R}^5 . Then S cannot contain more than 5 elements.
 - There does not exist a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ that is both one-to-one and onto.
 - The determinant of a diagonal matrix is always equal to the product of its diagonal entries.
 - Suppose that V is a vector space and $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ is a basis for V. Then the coordinate mapping $V \to \mathbb{R}^n$ (given by $\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$) must be an isomorphism.

- (2) Mark the following statements as either "True" or "False."
 - If A is an $m \times n$ matrix, and **b** is a vector in \mathbb{R}^m , then the set of solutions to the equation $A\mathbf{x} = \mathbf{b}$ must be a subspace of \mathbb{R}^n .

• For any $n \times n$ matrix A and any real number c, $det(cA) = c^n det(A).$

- Let \mathbf{w} and \mathbf{v} be vectors in \mathbb{R}^n . If \mathbf{v} is orthogonal to \mathbf{w} , then the length of $(\mathbf{w} + \mathbf{v})$ must be the same as the length of \mathbf{w} .
- Let $M_{n \times n}$ denote the vector space of $n \times n$ matrices (with the usual rules for addition and scalar multiplication). Then

$$\dim M_{n \times n} = n$$

for any n.

• Let A be a $n \times n$ matrix that has one (and only one) real eigenvalue. Then A must be equal to a scalar multiple of the identity matrix. (3) Let

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(a) Compute A^{-1} .

(b) Compute $\det A$.

(4) Please circle your answers for the following problems.

(a) Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which flips vectors across the origin. Find the standard matrix for S.

(b) Let

$$\mathbf{v} = \left[\begin{array}{c} 3\\4 \end{array} \right].$$

Find a vector \mathbf{w} of length 1 which is orthogonal to \mathbf{v} .

(c) Let T be a triangle in \mathbb{R}^2 whose vertices all have integer coordinates. What is the smallest possible area of the interior of T? (Assume that the vertices of T do not all line on a single line.)

Credit for problems 5-8 is based on answers and on work shown.

(5) Let

$$A = \begin{bmatrix} 1 & 2 \\ -2 & -3 \\ 0 & 2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ -4 \\ -4 \end{bmatrix}.$$

Find a vector \mathbf{x} which satisfies the equation $A\mathbf{x} = \mathbf{b}$.

(6) Let

$$H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}.$$

Compute the dimension of H. (Be sure to show work that supports your answer.)

(7) Let

$$A = \begin{bmatrix} 1 & -2 \\ 4 & 7 \end{bmatrix}$$

(a) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

(b) Let
$$\mathbf{v} = \begin{bmatrix} 0\\1 \end{bmatrix}$$
, and consider the sequence of vectors $\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots$

Which of the following statements best describes the geometric behavior of this sequence? (Circle one.)

- The sequence tends towards the origin.
- The sequence tends towards the vector $\begin{bmatrix} 2\\1 \end{bmatrix}$.
- The sequence tends towards the vector $\begin{bmatrix} 1\\ -1 \end{bmatrix}$.
- The sequence tends away from the origin.

(8) Let

$$H = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\} \text{ and } \mathbf{v} = \begin{bmatrix} 6\\5\\4 \end{bmatrix}.$$

Find the vector $\mathbf{w} \in H$ which makes the distance $\|\mathbf{w} - \mathbf{v}\|$ as small as possible.

(9) Let A be a 10×10 matrix such that A^2 is the zero matrix. Prove that the dimension of Nul A must be at least 5.