Final Exam - Math 217
 Carl Miller
 Winter 2008

Name: \qquad

Please circle your answers. Cross out any work that you do not want graded.

Problem	Grade	Max
1		10
2		10
3		10
4		15
5		10
6		10
7		15
8		10
9		10
Total		100

Credit for problems 1-4 is based on your answers only.

(1) Mark the following statements as either "True" or "False."

- If A and B are invertible square matrices, then $(A B)^{-1}$ must be equal to $A^{-1} B^{-1}$.
- Suppose that S is an orthonormal set of vectors in \mathbb{R}^{5}. Then S cannot contain more than 5 elements.
- There does not exist a linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ that is both one-to-one and onto.
- The determinant of a diagonal matrix is always equal to the product of its diagonal entries.
- Suppose that V is a vector space and $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V. Then the coordinate mapping $V \rightarrow \mathbb{R}^{n}$ (given by $\left.\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}\right)$ must be an isomorphism.
(2) Mark the following statements as either "True" or "False."
- If A is an $m \times n$ matrix, and \mathbf{b} is a vector in \mathbb{R}^{m}, then the set of solutions to the equation $A \mathbf{x}=\mathbf{b}$ must be a subspace of \mathbb{R}^{n}.
- For any $n \times n$ matrix A and any real number c,

$$
\operatorname{det}(c A)=c^{n} \operatorname{det}(A)
$$

- Let \mathbf{w} and \mathbf{v} be vectors in \mathbb{R}^{n}. If \mathbf{v} is orthogonal to \mathbf{w}, then the length of $(\mathbf{w}+\mathbf{v})$ must be the same as the length of \mathbf{w}.
- Let $M_{n \times n}$ denote the vector space of $n \times n$ matrices (with the usual rules for addition and scalar multiplication). Then

$$
\operatorname{dim} M_{n \times n}=n
$$

for any n.

- Let A be a $n \times n$ matrix that has one (and only one) real eigenvalue. Then A must be equal to a scalar multiple of the identity matrix.
(3) Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Compute A^{-1}.
(b) Compute $\operatorname{det} A$.
(4) Please circle your answers for the following problems.
(a) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which flips vectors across the origin. Find the standard matrix for S.
(b) Let

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Find a vector \mathbf{w} of length 1 which is orthogonal to \mathbf{v}.
(c) Let T be a triangle in \mathbb{R}^{2} whose vertices all have integer coordinates. What is the smallest possible area of the interior of T ? (Assume that the vertices of T do not all line on a single line.)

Credit for problems 5-8 is based on answers and on work shown.
(5) Let

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & -3 \\
0 & 2
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
-4 \\
-4
\end{array}\right]
$$

Find a vector \mathbf{x} which satisfies the equation $A \mathbf{x}=\mathbf{b}$.
(6) Let

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

Compute the dimension of H. (Be sure to show work that supports your answer.)
(7) Let

$$
A=\left[\begin{array}{cc}
1 & -2 \\
4 & 7
\end{array}\right]
$$

(a) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$.
(b) Let $\mathbf{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and consider the sequence of vectors

$$
\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \ldots
$$

Which of the following statements best describes the geometric behavior of this sequence? (Circle one.)

- The sequence tends towards the origin.
- The sequence tends towards the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
- The sequence tends towards the vector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
- The sequence tends away from the origin.
(8) Let

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\} \text { and } \mathbf{v}=\left[\begin{array}{l}
6 \\
5 \\
4
\end{array}\right] .
$$

Find the vector $\mathbf{w} \in H$ which makes the distance $\|\mathbf{w}-\mathbf{v}\|$ as small as possible.
(9) Let A be a 10×10 matrix such that A^{2} is the zero matrix. Prove that the dimension of $\mathrm{Nul} A$ must be at least 5 .

