Midterm 2 - Math 217 Carl Miller Winter 2008

Name: _____

Show work for all of your answers. Cross out any work that you do not want graded. Be sure to read problem statements carefully.

Problem	Grade	Max
1		20
2		25
3		25
4		15
5		15
Total		100

(1) Let

$$\mathbf{v} = \begin{bmatrix} 1\\ -1 \end{bmatrix} \text{ and } \mathcal{B} = \left\{ \begin{bmatrix} 3\\ 1 \end{bmatrix}, \begin{bmatrix} 5\\ 2 \end{bmatrix} \right\}.$$

Find the relative coordinate vector $[\mathbf{v}]_{\mathcal{B}}$.

(2) Let

$$A = \left[\begin{array}{rrrr} 1 & 0 & 2 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{array} \right].$$

(a) Compute det A.

(b) Compute $det(A^2)$.

(3) (a) Let \mathbb{P}_3 be the vector space of polynomials (in "t") that are of degree at most 3. Find a basis for \mathbb{P}_3 .

(b) Let $T: \mathbb{P}_3 \to \mathbb{R}$ be the linear transformation defined by $T(\mathbf{p}(t)) = \mathbf{p}(2).$

Find a basis for the kernel of T.

(4) Let **D** be the parallelogram in \mathbb{R}^2 whose vertices (in clockwise order) are (1,3), (3,6), (7,5), and (5,2). Find the area of the region enclosed by **D**.

(5) Let A and B be 3×3 matrices that are of rank 1. Prove that the rank of the matrix A + B cannot be greater than 2.