Midterm 2 - Math 217
 Carl Miller
 Winter 2008

Name: \qquad

Show work for all of your answers. Cross out any work that you do not want graded. Be sure to read problem statements carefully.

Problem	Grade	Max
1		20
2		25
3		25
4		15
5		15
Total		100

(1) Let

$$
\mathbf{v}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and } \mathcal{B}=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right\} .
$$

Find the relative coordinate vector $[\mathbf{v}]_{\mathcal{B}}$.
(2) Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]
$$

(a) Compute $\operatorname{det} A$.
(b) Compute $\operatorname{det}\left(A^{2}\right)$.
(3) (a) Let \mathbb{P}_{3} be the vector space of polynomials (in " t ") that are of degree at most 3. Find a basis for \mathbb{P}_{3}.
(b) Let $T: \mathbb{P}_{3} \rightarrow \mathbb{R}$ be the linear transformation defined by

$$
T(\mathbf{p}(t))=\mathbf{p}(2)
$$

Find a basis for the kernel of T.
(4) Let \mathbf{D} be the parallelogram in \mathbb{R}^{2} whose vertices (in clockwise order) are $(1,3),(3,6),(7,5)$, and $(5,2)$. Find the area of the region enclosed by \mathbf{D}.
(5) Let A and B be 3×3 matrices that are of rank 1 . Prove that the rank of the matrix $A+B$ cannot be greater than 2 .

