## Proof Assignment \#1

Write up solutions to two of the following three problems. The due date for this assignment is Thursday, October 22nd. This assignment can be done individually or in groups of up to three people.

## Problems:

1. Let $a$ be an integer, and let $b=a^{3}+3 a^{2}+2 a$. Prove that $b$ must be divisible by 6 .
2. Let $m$ and $n$ be coprime integers, both greater than or equal to 2 . Consider the set of all rational numbers $x$ that can expressed in the form

$$
x=\frac{r}{m}+\frac{s}{n},
$$

with $r, s \in \mathbb{Z}$. How many such numbers are there that are greater than 0 and less than 1 ? Prove your answer.
3. Let $d$ be an odd positive integer. Prove that

$$
\binom{d}{0}+\binom{d}{2}+\binom{d}{4}+\cdots+\binom{d}{d-1}=2^{d-1}
$$

## Guidelines:

- When writing your proofs, you can assume any results that are proved in Chapters 1-5 in the textbook. ${ }^{1}$ You can also assume any results that were proved in class.
- Make your solutions self-contained. The reader should be able to follow your proof without having to look back at the assignment sheet. (A simple way to make your solutions selfcontained is to copy the problem down at the beginning of your solution.)
- If you consult any references other than the textbook, indicate that you have done so. (Example: "Sources consulted: Algebra by Serge Lang.") If you get help on the assignment from anyone outside of your working-group, you should note that also.


## Tips:

- Use complete sentences.
- After writing out a proof, read it to yourself from beginning to end. Note any portions of the proof that are hard to read or not fully justified.
- Don't create your proofs by patching together sentences from the textbook. Proofs that are written this way are hard to read. (Also, copying from a source without proper credit is unethical.) Construct your own sentences.
- Feel free to come to office hours to discuss this assignment. I'm happy to look at a draft of a proof and give you suggestions.

[^0]
[^0]:    ${ }^{1}$ However, please do not assume results that are only stated in the exercises in the textbook.

