Proof Assignment \#2

Write up solutions to one of the following three problems. This assignment should be done individually.

The due date for this assignment is Thursday, December 10th.

Problems:

1. Prove that for any two positive integers n and m,

$$
\operatorname{gcd}\left(2^{n}-1,2^{m}-1\right)=2^{\operatorname{gcd}(n, m)}-1
$$

2. Suppose that a and n are positive integers such that $\operatorname{gcd}\left(a^{2}, n\right)=\operatorname{gcd}(a, n)$. Prove that for some integer $m>1$,

$$
a^{m} \equiv a \quad(\bmod n)
$$

3. Count the number of irreducible monic polynomials of degree 2 in $(\mathbb{Z} / 13 \mathbb{Z})[X]$. Prove your answer.

In your proofs, you can assume any results that are proved in Chapter 1-14 in the textbook. (However, please do not assume results that are only stated in the exercises.) You can also assume any results that were proved in class.

Guidelines \& Tips: (from previous assignment)

- Make your solutions self-contained. The reader should be able to follow your proof without having to look back at the assignment sheet. (A simple way to make your solutions selfcontained is to copy the problem down at the beginning of your solution.)
- If you consult any references other than the textbook, indicate that you have done so. (Example: "Sources consulted: Algebra by Serge Lang.") If you get help on the assignment from anyone, you should note that also.
- Use complete sentences.
- After writing out a proof, read it to yourself from beginning to end. Note any portions of the proof that are hard to read or not fully justified.
- Don't create your proofs by patching together sentences from the textbook. Proofs that are written this way are hard to read. (Also, copying from a source without proper credit is unethical.) Construct your own sentences.
- Feel free to come to office hours to discuss this assignment. I'm happy to look at a draft of a proof and give you suggestions.

