Math 567 Winter 2009 Carl Miller

Problem Set #2

Due date: Wednesday, February 11th.

1. Find a self-dual binary [6, 3]-code.

2. Suppose that *n* and *d* are positive integers with d > 2n/3. Prove that does not exist a binary [n, 2, d]-code.

3. Suppose that a message consisting of 6 zeroes is sent through a binary symmetric channel with bit-error probability p = 0.1. What's the probability the received message contains exactly three 0's and three 1's?

4. (a) Let $C \subseteq \mathbb{F}_2^7$ be the code with generator matrix

1	0	0	0	1	1	0
1	1	0	0	0	1	0
0	0	1	0	0	0	0
1	0	0	1	0	1	1
0	0	0	0	1	1	1
						_

Find a parity check matrix for C.

(b) Suppose that this code is used on a binary symmetric channel. Suppose that a 7-bit codeword $\mathbf{x} \in C$ is sent across the channel, and the received word \mathbf{x}' is the same as \mathbf{x} except that the 5th bit is flipped. What's the syndrome of \mathbf{x}' ? (Use the parity check matrix you found in part (a).)

5. Prove that there is no such thing as a perfect binary [16, k, 3]-code.

6. (*Extra credit.*) How many binary [n, 2]-codes exist? (In other words, count the number of subspaces of dimension 2 in \mathbb{F}_2^n . Express your answer as a formula involving n.)