Problem Set \#2

Due date: Wednesday, February 11th.

1. Find a self-dual binary $[6,3]$-code.
2. Suppose that n and d are positive integers with $d>2 n / 3$. Prove that does not exist a binary $[n, 2, d]$-code.
3. Suppose that a message consisting of 6 zeroes is sent through a binary symmetric channel with bit-error probability $p=0.1$. What's the probability the received message contains exactly three 0 's and three 1 's?
4. (a) Let $C \subseteq \mathbb{F}_{2}^{7}$ be the code with generator matrix

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Find a parity check matrix for C.
(b) Suppose that this code is used on a binary symmetric channel. Suppose that a 7 -bit codeword $\mathbf{x} \in C$ is sent across the channel, and the received word \mathbf{x}^{\prime} is the same as \mathbf{x} except that the 5 th bit is flipped. What's the syndrome of x^{\prime} ? (Use the parity check matrix you found in part (a).)
5. Prove that there is no such thing as a perfect binary $[16, k, 3]$-code.
6. (Extra credit.) How many binary $[n, 2]$-codes exist? (In other words, count the number of subspaces of dimension 2 in \mathbb{F}_{2}^{n}. Express your answer as a formula involving n.)

