Problem Set \#4

Due date: Friday, March 20th.

1. Let \mathcal{H} be the linear code over \mathbb{F}_{2} with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

\mathcal{H} is a binary Hamming code. Its minimum distance is 3 .
(a) Suppose that we puncture \mathcal{H} by deleting the last position. What are the parameters (including minimum distance) of the new code?
(b) Suppose that we extend \mathcal{H} by adding a parity check bit. What are the parameters of the new code?
(c) Suppose that we shorten \mathcal{H} by one position. What is the mininum distance of the new code?
2. Let C_{1} and C_{2} be linear codes over \mathbb{F}_{2}. Let C be the direct product of C_{1} and C_{2} (see Problem 3.8.12 in the textbook for the definition of direct product). Is it possible to determine the weight distribution of C from the weight distribution of C_{1} and C_{2} ? Explain.
3. Let \mathcal{G}_{23} denote the binary Golay code. What is the minimum distance of \mathcal{G}_{23}^{\perp} ? (Explain your answer.)
4. Let $q=p^{r}$, where p is prime.
(a) Count the number of invertible $d \times d$ matrices with entries from \mathbb{F}_{q}.
(b) (Extra credit) Count the number of d-dimensional subspaces of $\left(\mathbb{F}_{q}\right)^{n}$.
5. Let n be an even positive integer. Is it is possible to find $n+1$ codewords in \mathbb{F}_{2}^{n} such that any two of them differ in exactly $n / 2$ places? Find a general approach, or prove that this is not possible.
6. (a) How many codewords of weight 6 are contained in the ternary Golay code?
(b) (Extra credit) Compute the full weight enumerator of the ternary Golay code.

