Problem Set #4

Due date: Friday, March 20th.

1. Let \mathcal{H} be the linear code over \mathbb{F}_2 with generator matrix

G =	1	0	0	0	0	1	1	
	0	1	0	0	1	0	1	
	0	0	1	0	1	1	0	•
	0	0	0	1	1	1	1	
							_	

 \mathcal{H} is a binary Hamming code. Its minimum distance is 3.

(a) Suppose that we puncture \mathcal{H} by deleting the last position. What are the parameters (including minimum distance) of the new code?

(b) Suppose that we extend \mathcal{H} by adding a parity check bit. What are the parameters of the new code?

(c) Suppose that we shorten \mathcal{H} by one position. What is the minimum distance of the new code?

2. Let C_1 and C_2 be linear codes over \mathbb{F}_2 . Let C be the *direct product* of C_1 and C_2 (see Problem 3.8.12 in the textbook for the definition of direct product). Is it possible to determine the weight distribution of C from the weight distribution of C_1 and C_2 ? Explain.

3. Let \mathcal{G}_{23} denote the binary Golay code. What is the minimum distance of \mathcal{G}_{23}^{\perp} ? (Explain your answer.)

4. Let $q = p^r$, where p is prime.

(a) Count the number of invertible $d \times d$ matrices with entries from \mathbb{F}_q .

(b) (Extra credit) Count the number of d-dimensional subspaces of $(\mathbb{F}_q)^n$.

5. Let n be an even positive integer. Is it is possible to find n + 1 codewords in \mathbb{F}_2^n such that any two of them differ in exactly n/2 places? Find a general approach, or prove that this is not possible.

6. (a) How many codewords of weight 6 are contained in the ternary Golay code?

(b) *(Extra credit)* Compute the full weight enumerator of the ternary Golay code.